direct product, metabelian, nilpotent (class 4), monomial, 2-elementary
Aliases: C7×C42⋊C4, C42⋊2C28, (C4×C28)⋊5C4, (D4×C14)⋊4C4, (C2×D4)⋊2C28, C23⋊C4⋊2C14, C23.3(C7×D4), C4⋊1D4.2C14, (C22×C14).3D4, C14.34(C23⋊C4), (D4×C14).176C22, (C7×C23⋊C4)⋊8C2, (C2×C4).1(C2×C28), C2.8(C7×C23⋊C4), (C2×C28).12(C2×C4), (C2×D4).3(C2×C14), (C7×C4⋊1D4).9C2, C22.12(C7×C22⋊C4), (C2×C14).75(C22⋊C4), SmallGroup(448,157)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C7×C42⋊C4
G = < a,b,c,d | a7=b4=c4=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c, dcd-1=b2c >
Subgroups: 242 in 86 conjugacy classes, 26 normal (18 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, C14, C14, C42, C22⋊C4, C2×D4, C2×D4, C28, C2×C14, C2×C14, C23⋊C4, C4⋊1D4, C2×C28, C2×C28, C7×D4, C22×C14, C22×C14, C42⋊C4, C4×C28, C7×C22⋊C4, D4×C14, D4×C14, C7×C23⋊C4, C7×C4⋊1D4, C7×C42⋊C4
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, C14, C22⋊C4, C28, C2×C14, C23⋊C4, C2×C28, C7×D4, C42⋊C4, C7×C22⋊C4, C7×C23⋊C4, C7×C42⋊C4
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(8 23 18 56)(9 24 19 50)(10 25 20 51)(11 26 21 52)(12 27 15 53)(13 28 16 54)(14 22 17 55)
(1 47 35 39)(2 48 29 40)(3 49 30 41)(4 43 31 42)(5 44 32 36)(6 45 33 37)(7 46 34 38)(8 23 18 56)(9 24 19 50)(10 25 20 51)(11 26 21 52)(12 27 15 53)(13 28 16 54)(14 22 17 55)
(1 50 39 19)(2 51 40 20)(3 52 41 21)(4 53 42 15)(5 54 36 16)(6 55 37 17)(7 56 38 18)(8 34 23 46)(9 35 24 47)(10 29 25 48)(11 30 26 49)(12 31 27 43)(13 32 28 44)(14 33 22 45)
G:=sub<Sym(56)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (8,23,18,56)(9,24,19,50)(10,25,20,51)(11,26,21,52)(12,27,15,53)(13,28,16,54)(14,22,17,55), (1,47,35,39)(2,48,29,40)(3,49,30,41)(4,43,31,42)(5,44,32,36)(6,45,33,37)(7,46,34,38)(8,23,18,56)(9,24,19,50)(10,25,20,51)(11,26,21,52)(12,27,15,53)(13,28,16,54)(14,22,17,55), (1,50,39,19)(2,51,40,20)(3,52,41,21)(4,53,42,15)(5,54,36,16)(6,55,37,17)(7,56,38,18)(8,34,23,46)(9,35,24,47)(10,29,25,48)(11,30,26,49)(12,31,27,43)(13,32,28,44)(14,33,22,45)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (8,23,18,56)(9,24,19,50)(10,25,20,51)(11,26,21,52)(12,27,15,53)(13,28,16,54)(14,22,17,55), (1,47,35,39)(2,48,29,40)(3,49,30,41)(4,43,31,42)(5,44,32,36)(6,45,33,37)(7,46,34,38)(8,23,18,56)(9,24,19,50)(10,25,20,51)(11,26,21,52)(12,27,15,53)(13,28,16,54)(14,22,17,55), (1,50,39,19)(2,51,40,20)(3,52,41,21)(4,53,42,15)(5,54,36,16)(6,55,37,17)(7,56,38,18)(8,34,23,46)(9,35,24,47)(10,29,25,48)(11,30,26,49)(12,31,27,43)(13,32,28,44)(14,33,22,45) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(8,23,18,56),(9,24,19,50),(10,25,20,51),(11,26,21,52),(12,27,15,53),(13,28,16,54),(14,22,17,55)], [(1,47,35,39),(2,48,29,40),(3,49,30,41),(4,43,31,42),(5,44,32,36),(6,45,33,37),(7,46,34,38),(8,23,18,56),(9,24,19,50),(10,25,20,51),(11,26,21,52),(12,27,15,53),(13,28,16,54),(14,22,17,55)], [(1,50,39,19),(2,51,40,20),(3,52,41,21),(4,53,42,15),(5,54,36,16),(6,55,37,17),(7,56,38,18),(8,34,23,46),(9,35,24,47),(10,29,25,48),(11,30,26,49),(12,31,27,43),(13,32,28,44),(14,33,22,45)]])
91 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 7A | ··· | 7F | 14A | ··· | 14F | 14G | ··· | 14L | 14M | ··· | 14X | 14Y | ··· | 14AD | 28A | ··· | 28R | 28S | ··· | 28AP |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | ··· | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 |
size | 1 | 1 | 2 | 4 | 4 | 8 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 | 4 | ··· | 4 | 8 | ··· | 8 |
91 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C4 | C4 | C7 | C14 | C14 | C28 | C28 | D4 | C7×D4 | C23⋊C4 | C42⋊C4 | C7×C23⋊C4 | C7×C42⋊C4 |
kernel | C7×C42⋊C4 | C7×C23⋊C4 | C7×C4⋊1D4 | C4×C28 | D4×C14 | C42⋊C4 | C23⋊C4 | C4⋊1D4 | C42 | C2×D4 | C22×C14 | C23 | C14 | C7 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 6 | 12 | 6 | 12 | 12 | 2 | 12 | 1 | 2 | 6 | 12 |
Matrix representation of C7×C42⋊C4 ►in GL4(𝔽29) generated by
20 | 0 | 0 | 0 |
0 | 20 | 0 | 0 |
0 | 0 | 20 | 0 |
0 | 0 | 0 | 20 |
1 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 28 |
0 | 0 | 1 | 0 |
28 | 28 | 28 | 0 |
2 | 1 | 1 | 1 |
0 | 0 | 0 | 28 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
27 | 28 | 28 | 28 |
G:=sub<GL(4,GF(29))| [20,0,0,0,0,20,0,0,0,0,20,0,0,0,0,20],[1,0,0,0,0,1,0,0,0,0,0,1,1,0,28,0],[28,2,0,0,28,1,0,0,28,1,0,1,0,1,28,0],[1,0,0,27,0,0,1,28,0,0,0,28,0,1,0,28] >;
C7×C42⋊C4 in GAP, Magma, Sage, TeX
C_7\times C_4^2\rtimes C_4
% in TeX
G:=Group("C7xC4^2:C4");
// GroupNames label
G:=SmallGroup(448,157);
// by ID
G=gap.SmallGroup(448,157);
# by ID
G:=PCGroup([7,-2,-2,-7,-2,-2,-2,-2,392,421,3923,3538,248,6871,375,14117]);
// Polycyclic
G:=Group<a,b,c,d|a^7=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c,d*c*d^-1=b^2*c>;
// generators/relations